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ABSTRACT

The single-granule velocity distribution function is shown to be Maxwell-Boltzmann for hard-spherc granular
flows at steady-state exhibifing no gradicnts and absent a body-force. This is accomplished by approximating the two-
granule velocity distribution function as the product of two single-granule velocity distribution functions and a
correlating function and by applying to a canonical ensemble o function analogous to Boltzmann®s H-function.

NOMENCLATURE

c constant of integration m granule mass

C, vector of integration constants n granule number density
K unit epatial vector; inverse collision Tr- granule position

N number of granules in a system t time

v volume of 2 system ¥ « granule velocity

v granule velocity; inverse collision <> continuum velocity

X body force XYz Cartesian coordinates

a constant At instrument response time
c constant of intcgration ¥ flow property

[ unit spatial vector in direction j z summation

' restitution coefficient e granular temperature
LA IR single-granule velocity distribution function % Lagrange multiplicr
Brv vy, £ two-granule velocity distribution function ¥ granulc property

h{k v, v;), h correlating fitnction P continuum mass density
j. X, Y, or Zindex g granule diameter

k unit spatial vector i Lagrange multiphicr
INTRODUCTION

From power production to catalysis from ccreal handling to chemical and pharmaceuticals manufacturing,
granular materials are an important part of the cconomy. Accuretely knowing how they move would allow for
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tremendous savings in their processing. Since the work of Lun et al, (1984), the kinetic theory of gases (Chapman
and Cowling, 1970) has been applied to predict the continuum properties of flowing granular materials. In using the
kinetic theory of gases, the assumption has been that the steady-state distribution of velocities for granular flows that
have no gradients is Maxwell-Boltzmann, the same as & gas in equilibrium. This distribution becomes the zeroth-
order term in an expansion to predict the flow propertics of shearing granular materials. The problem is that granules
suffer inclastic collisions, whereas the usual development for gases (Chapman and Cowling, 1970; Hirshfelder et al.,
1954; MceQuarric, 1973) considers only encrgy-conserving clastic collisions. Goldhirsh and Sela (1996) resolved this
by using the Maxwell-Boltzmann distribution for clastic collisions as the zeroth-order term. This work presents a
devclopment indicating that the velocity distribution of even very inelastic granules is Maxwefl-Boltzmann for steady-
state flows exhibiting no gradients.

MODEL DEVELOPMENT

Imagine a canonical ensemble composed of a great number of macroscapically identical, closed systems. Each
system has the same number of spherical granules N all with the same mass m and diameter ¢. Let the mass of each
spherical granule be concentrated at its center so that rotational degrees of freedom are ignored. Each system is
enclosed within volume V, which is very large compared 1o its area s0 that boundary conditions are not considered.
As time passes cach system evolves according to Newton’s Laws of Motion; granules collide inclastically and
transform their kinetic encrgy into thermal energy, Becausc that thermal encrgy cannot be transformed back into
kinetic energy, it is considered lost to the systern. Thermal energy is replaced by kinetic energy transmitted through
the walls of the system from a surrounding bath so large that it maintains a constant granular temperature 6.
Granular temperature is proportional to the kinetic energy of rrndom motion. At any time, the macroscopic state of
each system is characterized by N, V, and €.

Introduce the single-granule velocity distribution function f{x,v, 1) defined so that the most likely number of
granules in any one selected system that has a velocity within dv, of v, and whose center is within dr of r during time
Atoftis f{r,v,,t) drdv;. Practically, the time interval At is the largest time needed to replace kinetic cnergy lostby a
collision, the time long enough for a representative number of granules to visit the subvolume at r, or the response
fime of & flow measurement device.

The evolution of average mass, momentum, and kinctic energy charecterizes flows. Since cach of these depends
on the single-granule velocity distribution function, a description of flow is possibic when the time rate of change of £
is known,

1 £

d¥rH _ } d f{rv,.5
a [ g

- m
where Y(v,) represcnts mass, momentum, or kinetic energy for & single representative granule, and F(r,t) is its
average value within the flow. The time evolution of T is zero unless » collision occurs. A forward collision changes
v, to another velocity v,', whereas an inverse collision changes it from some other velocity V, to v,.

For granules, mass and momentum are conserved during a collision, but kinetic encrgy is not. A simple model
that tekcs into account the dissipation of kinetic cnergy into thermal energy whenever granules collide i3 one in which
the granules bounce back with a relative velocity along their line of centers that is less than their pre-collision value
(Jenkins and Savage, 1983). For forward and inverse collisions, respectively, the expressions are

Gk (V) =-k-hv) and e K- (V,-V)=-K-(v,-v) = k- (v,-v)), @
where the restitution coefficient ¢, is a constant material property with a value between zero and one; v; and V, arc
the respective velocitics of the striking granule for the forward and inverss collisions; and k and X are unit vectors
that point in opposite directions from r to the center of their respective striking granule. The relationships among the
variables deseribing the before and after of an inverse collision are

1+
v, =vl+%%{k-(vz-vl)} k=v, -%(1+cn){K-(v,-vl)} K

1+
VI=V2-%-—(—::i)-{k-(vz-vl)} k=v1+'21'"(l+eg){K'(vz_vt)} K .
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By squaring and summing the expressions in Eq. (3} and applying Eq. (2}, the change in the kinetic energy associated
with an inverse collision is

0=-28 V. B V. 2(K-(V,-V)P-[k (v, -v)).
SRR R AR A R (S VAR S S RV ©
The Boltzmann equation describes the time rate of change in fin terms of forward and inverse collisions. For
granules it is

dﬂr.vht) - .g_tf + v;f. ‘r‘ + v'lfa E

dt m
= - , f -1—2 fr-ok, V5.V, 1) - f(rrokv,rv, | {k - (v, v} dk dv, ,
K-ty <o ~ { Sr s

where X is a body force and £ is the two-granule velocity distribution function stating the likelihood that any two
granules are respectively located af two points in space with two velocitics (Goldhirsh and Scla, 1996). Equation (5)
becomes the Boltzmann equation for a hard sphere gas by setting o to one, by closing it using Boltzmann’s
molecular chaos assumption to approximate the two-granule velocity distribution fusniction s the product of two
single-granule velocity distribution finctions, and by requiring the spatial gradients of the flow to be small relative to
the molecular diameter.

The time mte of changs of any continuum property B(r 1) of & flowing gas is described by Enskog’s gencral
cquation of change for molecular property P(v). Itis derived by multiplying the Boltanann equation by $i(v),
integrating over all v, and exploiting two symmetries (McQuarrie, 1973). The same can be done for granular flows
because the two symmetrizing steps are a consequence of integrating over all v, as well as all v,, and are not affected
by the restitution coefficient. The first symmetrizing step is recognizing that the velocity of the granule at r can be
Iabeled either 1 or 2. The sccond step is recognizing that every collision involving a granule at r is both a forward
collision and an inverse collision. Enskog’s gencral equation of change for flowing granules is

: & f
d‘rgo_ -2 [ [ S0+ 90 60V,)-4CV, ) %

K-(m-v) <0 —=-w

[-:—; f{r-ok V,.r.V,.b) - fr+okvrv, | {k - (v,v)} dk dv, dv, .

©®
 The goal is to determine f for a steady-state granular flow exhibiting no gradients and absent a body foree, To
proceed further, and in contrast to the molecular chaos assumption, £* is approximated as the product of two single-
particle velocity distribution functions fand a correlating function h that depends upon k, v,, and v, for the forward
collision and upon X, V,, and ¥, for the inverse coflision,

fr-ok VvV O r+okv,ry b «

Al

:‘E BKV,.V,) fir-okV,8) feY,0-hky,v,) Kreoky,t) v, .
M

The next step is to apply Enskog’s general equation for change to the stcady-state, no gradients and no body-force
case. In analogy with the Boltzmann H-function for the micro canonical ensemble (McQuarric, 1973), the relevant
property to use for the canonical ensemble is

1 mv?
2 me

e’

W) = I(EW)) + ay

o P-= f [ I[fv,)] + ] flv,.0) dv, .

Using this property, Enskog’s general equation for change, Eq. (6}, becomes
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2me

k:{n-v)<Q == I'

(-‘; BKV,V,) V.0 TV, - Blkv,v,) 9,0 B¥,0 ) (k- (v,-v,)} dk dv, v,
g .

< [ (iR i) Y -V,

K- {%") <0 —=u

[é BKV,V,) f(V,.0) f{V,.1) - h(ky,v,) fv,t) fv,t) ] {k- (v,-v))} dk dv, dv, .

®)
: ex B(Kv,v;)
To the braces in the sccond term on the right side of Eq. (9) add ln——— 2" and subtract it from the brackets in
h(Kivpvz) )
the first term,
aF _ -0 f mv; +mv3-mV:- sz eR hikv, v,)
@4 | 2me h(K,V
[Lzh(mv,,v,)f(v DRV, - h{k,vl,vz)f(vz,t)f(vl,t)] ke(v,-v,) didv,dv,
r
i I RPN L. .o/t )
] k- (v;[v.) <o ‘(.!. {lnm“)] oA DIl LCAMA } '
(L:h(K,Vl,V,ﬁVz,t)t{V,,t) - hiky,,v, (v, 6v,,0) ] k{v,-v,) didv,dv, .
% (10)
The first tcem on the right side is zero as long as
2
e h(k,vl,v:) m\rz +1m|r2 —sz mV1 _ 2 _ . _ 9
BV V) — = - ( K-V, - VI - k- (v, - vl }- .

This will bc shown to be the casc. For now assume that the first torm is zero, and notice that Eq. (11) implics that a
solution is sought in which the argument of the correlating function is ke(v,,-v;); h(k,v,,vy) = h(k=(v,,-vy) ).
The integrand appearing in the second tenm of the right side of Eq. (10) can be written as

o B0
_fva, vt

- fl(v pt) - fz("z-vpt) fk- (vz'vl) }

(12)

Regardless if £1(V,,V,,0/e} > £(v,,%,.1) or £V, V, tVe;? < £i(v,,v,,1), this integrand is everywhere positive.
Consequently, the time rate of change in ¥ is always negative. Since ¥ is bounded, its ratc of change cventually
becomes zero as does the remaining integral on the right side of Eq. (10). This is possible only if £(V,,V, Ve =
£4(v,,v,) for all v, and v,. Accordingly, for the steady-state flow that cxhibits no gradicnts end no body force, the

142



Boltzmann cquation, Eq. (5), simplifies to

L gV, - V) 1V;) RY,) = Biky, - v)) fv)) vy . or
r

0 = In(hk(v, - v,))) *+ I(EW,) + I(@v,) - KAV, - V) ~ I(EV,) - B(fV,) + ned) . (q3)

The derivation of £ as presented by Kennard (1938) is followed. The functions £ and h are found by requiring
that they make Eq. (13) stationary under the constraints of mass, momentum, kinetic energy, and line-of-centers
velocity changes for an inverse collision. By inspection, the objective function in Eq. (13) depends on fourteen
variables. Six are held constant by considering only those inverse collisions with constant V, and V,. The
independence of the three components of v, is eliminated by explicitly considering the differential changes in the
three momentum equations, mv,+mv,-mV,-mV,=0,

mdv, +m dv,, = 0, m dv, +m dv,, = 0, and m dvj,rm dv,, = 0, or dv,; = - dvy, j=xYZ . (1qy

Variations in the five remaining variables express the differential change in the kinetic energy, Eq. (4),
0= 3 mivyvy) dvy + 2 KOV, V)l KV, V)] = 2 fewyv,)] dlke(y, )]

j=xyz (15)
the differential change in the relationship between the line-of-centers velocitics associated with an inverse collision,
Eq.(2),

0 = ep dK{V,-V))] - dfe(v,-v}} . 16)
and the variation in the objective function, Eq. (13),
) 3 (V) 9 WAV, LMk @)
°- 2 [ e v, ] BRI Y ey I A
9 ln(m(K - (V,-V)))
- S V-V
9K - (V,-V))] X OVl an

Lagrange’s undetermined multiplier method is used to extremize the above variation under the constraints for the
energy, Eq. (15) and the line-ofcenters velocity, Eq. (16). The Lagrange multiplicrs arc pt and x,

) 3 W(fly,)) 8 W(flv,)
0= E [ av a Vi

, + pm{ vy;Vy) ] dvy
jyz B

. [a W(h(c(v,~v)ep)) _ng v, -v) - x| dle(y,v))

3 [k(v,-v,)]

i ( 3 I(B(K(V,-V,))
9 [K(V,-V,} (18)
Each of these five coefficients must be zero because [k » (vi-v,)], [K » (V,-V,}], and the components of v, can vary

independently of cach other.
To start, sct the cocflicient of d(k » (v,-v))] to zero. It becomes

d hl(h(k'(vz_vi)seg)) i _ +
3 ktv,~v,)] 2 fetry )l + x

- "—;‘i KAV,-V,)] - x ex] dKAV,-V,)] -

%)
which is intcgrated to yicld

In(h(k(v,~v,))) = % [ke(v,-v)P + ® {k(¥,-v)] + © . -
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Likewise the coefficient for d[K = (V,-V,)] is set to zero and integrated to yicld
V-V, = £7 (KOV,-VP + % e [K(V,-V)) + C.

1)
. ‘Now set to zero the coefficient for dv, . in Eq. (18),
a ]II(KVI)) a ln(i(vz))
Franih R - an
Ix -9
Diff s . . ) . & In(f(vl ) . s
erentiating again by either v,, or v,,, yields ———— = 0, because f{v,) is independent of the components of
1y 1x
I 3 In{f{¥.)) . N . .
v,. This indicates that —e depends only upon v,,. Similaly, every first derivative of cither f{v,) or fivy)is
Ix
a function solely of the variable named in the derivative, Differentiating Eq. (22), by v,, yiclds
& In(flv,))
— s - km,
Ovix @3)
which is twice integrated, knowing that the first derivative depends on v,, alone, to obtain
. “am
ln.(f(vl)) -— v, +Chu v +Cyp s .
where C,, is a constant and C,, may be a function of v,y and v,,. Diffcrentiating this twice with respect to v, yields
Fin(flv,)) ) aﬂc,z .
avy avy, @5
The coefficient multiplying dv,, in Eq. (18) is set to zero and differentiated with respect to v, to yickd
& m(flv,)
—— —=-am.
My 26)
. . & (flv,)) .
Comparing the two cxpressions for —_— Eq. (25) and Eq. (26), indicatcs that
1y
.o pm 2
Cyz = 5 Vig * Cly Vi * Cz . an

where C,, is a constant and C, may be a function of vy, This expression for C,, is substituted into Eq. (24),
m m :
h(ﬁ‘ﬁ)) 2= “T’ vlzx - “2 vtz'r * clx iz * ClY iy ¥ < - @8)
To evaluate C_ twice differentiate Eq. (28) with respect to v,, and subtract from it the result obtained by setting
the coefficient of dv,, in Eq. (18) to zero and differentiating it with respect to v, The result is
FC
~=-pm, o C =- vy v C i+ €y
vy, )

Both C,, and C, are constants. With that, Eq. (28) becomes
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"
1

In(fv,))

Vi * Cyx Vi * Gy Viy + Cpz Vi * Gy

2 =TT W
:-F'_Evz-t-c-v +C
1 1 1 | S
2 i)

The Lagrange multiplier pt and the constants C,= C, e +C,e,+ C,.8, and C, are cvaluated byrequmng that the
averages of mass density and velocity be their mcesured values for the contmuum and by requiring that the variance

C - C
in the velocity be related o the granular temperature. Following McQuarrie (1973), define Infa) = C, + -2——'
pm

and express In(f{v,)) as

C 2 c C
n(f{v,)) = In{a) - L,;? (Vl'——l— , or fv)=a cxp{ - E.Z.E [vl-_'.] . (vl_,_i_] } .
- o pm @1)

The mass density is

jum < C n ‘;‘
P=mff(vl)dv|=maf -5 VI_E . Vt“ﬁ dv|=ma(-li—.] . -

The component of the average velocity in the x direction is

<"x>=Epif"1: flv) dv, = 'l? l lech_—(v "J dv,, _UC —& -"&“’J T h-"i'“y dv, dv

Clx

pm @3)
The other continuum velocity components together with <v,> yield <v>—(Cue,+C1,c,+ Cyee, Y(um). Granular
temperature is related to the varianee of the velocity,

c |
3e=_<(vl-<v>)’>=_.f(v1—<v>z)ﬁvl)dv —n——qu'y‘z[‘;lj“[u—;"n-] ] i{vt)dv,

_ 3
2pm )
Thcscreuults,um-l , <v>=—80  ad a=£[—l—)%=n[L)% are substituted into Eq
) ¥ opm m | 218 n8e)

(31) to yield the Maxwell-Boltzmann velocity distribution,
3

t.'(v)—a,_.'*“(' )('-—)=n(‘m+9-]?c%('lmy,mdf{vt)= [?%]-:-eﬁ(\g—m)’,

39)
where n is granule number density. Likewisc
3 - 3 -1
17, 8% 4 NIRRT L o
fv,) = n(zﬂe] e and f{V,)=n 7S ¢ . G6)

These results are substituted into the objective function, Eq. (13), in order to evaluate the difference in the constants ¢
and C from Eq. {20) and Eq. (21),
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0 = I(a(k(y, - v,))) - WKV, - V) + WRy,) - BEV) + bvy) - bEV,) + o)
0= %(mﬁ-rmvi—m\ﬁ'mvi) +¢-C + 'uz—m[(vl’m)z‘(‘ﬁ ~<w>)] + L;i[(vz'qb)!'("z“:w)z] + Infeg)

0=¢c-C+pmfy, +v,- V, - V] - <> + In(eg) or C=c¢+Infe)) 6N
This result and pr~1/m8, Eq. (34), arc substituted into Eq. (21) and Eq. (22) to yield
Iy, %)) = 5o Me@,-T)F + % fe(v) v o and

In(h(RAV, V) = - KV, -V + % & [K{V,-V))] + Ine) « © .
48 @38)

The two expressions in Eq. (38) are combined to reproduce the remaining criterion for the objective function to be
zero, namely that Eq. (11} is satisfied. Thus, the velocity distribution function for gradicnt-free, steady-state granular
flows in the absence of a body forcc is Maxwell-Boltzmann.

SUMMARY

An approach is presented that indicates that the single-granule velocity distribution function for a primitive
mode] granular flow at steady-state and absent a body foree and gradients is Maxwell-Boltzmann, the same a5 2 gas in
equilibrium, and in agreement with the central limit theorem of statistics. The inelasticity of a granular collision is
treated by causing the rebound velocity along the line of centers to be less than the incoming velocity, consequently,
the enscmble is canonical and Enskog’s gencral cquation for change is applicd to a function that is proportional to the
Helmholtz free energy. For the Heimholtz free energy to obtain a stationary value, Boltzmann’s molecular chaos
assurnption is replaced with a correlating function that depends on the relative velocity along the linc of centers of the
colliding granules. The Mmxwell-Boltzmann velocity distribution then follows from Kennard’s (1938) variational
approach. These results arc also applicable to hard-sphere gases by setting c; to one and everywhere replacing © with
kpT/m, where kj is Boltzmann®s constant and T is absolute temperature.
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